Thursday, December 10, 2020

Presentations: "multi-contrast OCT microscope"

Here we release five short presentation videos about our multi-contrast OCT microscope.

  1. "Label-free imaging of mouse liver dynamics" by Pradipta Mukherjee
  2. "Tissue dynamics imaging of tumor spheroid" by Ibrahim Abd El-Sadek
  3. "Computational directional OCT imaging" by Daisuke Oida
  4. "Polarization sensitive OCT microscope with computational refocusing" by Lida Zhu
  5. "Tissue scatterer density estimation by deep learning" by Thitiya Seesan
The videos are available on this YouTube Play list or the embedded video screen below. (You can select each presentation by the playlist, while all videos are played in a sequence at the embedded  video screen.) Enjoy!

私達の「マルチコントラストOCT顕微鏡」の左心の研究成果を紹介するショート プレゼンテーション ビデオ5件を公開します。英語のプレゼンですが、画像を見るだけでも面白いと思います。ぜひみてみてください!

ビデオはこの YouTube プレイリスト もしくは下の埋込ビデオから視聴できます。
※埋め込みビデオでは5つのプレゼンが連続して再生されます。プレイリストではプレゼンを選んで再生できます。

Joschi, Yoshiaki Yasuno
安野嘉晃

Tuesday, December 1, 2020

研究紹介:マルチコントラストOCT顕微鏡(仮想開口顕微鏡)

マルチコントラストOCT顕微鏡プロジェクトの紹介ビデオ(日本語)を作成しました。筑波大学の学部生対象のオムニバス講義用に作成されたビデオのため、35分と長尺ですが、私達のOCT顕微鏡プロジェクトを包括的に紹介しています。ぜひご覧ください。

Saturday, October 10, 2020

Publication: Label-free imaging of cancer spheroid dynamics

 Our colleague Ibrahim Abd El-Sadek recently published his new technology "dynamics optical coherence tomography OCT imaging." In this study, he demonstrated new imaging method, which is a combination of new imaging protocol of OCT and a newly developed signal processing method. 

By using this method, he successfully visualized the tissue activity of human cancer culture (MCF7 spheroid) totally non-invasively. This method also successfully visualized the anti-cancer drug response of the MCF7 spheroid.

The details are reported in Biomedical Optics Express, a journal of Optical Society of America.

>> Full length article (open access).

The digest of this research is also available on this short presentation video (YouTube).


私達の研究室の博士課程在学中の Ibrahim Abd El-Sadek さんが組織ダイナミクスイメージングに関する論文を発表しました。この研究で Ibrahim さんは新たに「組織の活動性を非侵襲・ラベルフリーにイメージングする手法」を開発しました。これは、OCTの新しい走査法とOCT信号の時間ゆらぎを解析する新しい信号処理手法の組み合わせによって実現されています。

この手法により、ヒト乳がん由来の培養組織(細胞凝集体)内部の代謝や壊死の様子の可視化に成功しました。また、この培養組織の抗がん剤に対する薬剤反応の可視化も可能になりました。

詳細は米光学会の学術雑誌 Biomedical Optics Express に発表されています。

>> Full length article (open access).

この研究のダイジェストはこのプレゼンテーション ビデオ(YouTube) でもご覧いただけます。

Citation:
I.A. El-Sadek, A. Miyazawa, L.T.W.Shen, S. Makita, S. Fukuda, T. Yamashita, Y. Oka, P. Mukherjee, S. Matsusaka, T. Oshika, H. Kano, and Y. Yasuno, "Optical coherence tomography-based tissue dynamics imaging for longitudinal and drug response evaluation of tumor spheroids," Biomedical Optics Express 11, 6231- (2020).

Thursday, October 1, 2020

Publication: Phase stabilization for holographic OCT processing

Our colleague Kensuke Oikawa recently reported a newly developed numerical method for volumetric phase stabilization of optical coherence microscopy (OCM) in Biomedical Optics Express.

In this study, Kensuke developed a new method to estimate the volumetric phase error (bulk phase error) of OCM, and also developed a method to correct this error. This method enabled highly accurate holographic processing of OCT.

By using this method, he demonstrated holographic refocusing of volumetric OCM of muscle samples. Owing to this methods, the fine muscle fiber structure was visualized over more than 600-um depth.

The details of the research is reported in Biomedical Optics Express.

>> Full length article (open access).


当研究室の及川健介君が研究成果を Biomedical Optics Express 誌に発表しました。
 ここで新たに開発された手法は、三次元OCT顕微鏡(OCM)のデータにおける位相誤差を推定し、さらにそれを補正するものです。この位相補正により、OCMデータにホログラフィー処理を適用してその画質を向上することが可能になりました。
 論文の中では、実際に「ホログラフィック・リフォーカス」と呼ばれる処理を用いることで、三次元のOCMデータの全深さ領域におけるフォーカスずれの補正を行いました。これにより、深さ600ミクロンい所の範囲で生体試料の微細な筋繊維が可視化されました。

この研究の詳細は Biomedical Optics Express 誌に掲載されています。

K. Oikawa, D. Oida, S. Makita, Y. Yasuno, "Bulk-phase-error correction for phase-sensitive signal processing of optical coherence tomography,"  Biomedical Optics Express 11, 5886- (2020).

Monday, August 31, 2020

Publication: Numerical analysis of polarization sensitive OCT signal

Our collaborator Hiroyuki Ichikawa from Ehime University and we jointly reported the numerical analysis of signal property of polarization sensitive optical coherence tomography (PS-OCT).

In this study, we used finite-difference time-domain (FDTD) method to analyze the OCT probe beam's propagation property in a periodic structure. By this analysis, we found an artificial signal peak is generated as the OCT's probe beam passing through a grating structure.

This method will be used to interpret PS-OCT signals and to relate it to sample structures.

The details of the research is reported in OSA Continuum.

>> Full length article (open access).


愛媛大学の市川裕之先生と私達の研究グループの共同研究の成果が論文発表されました。

この研究では時間領域差分法と呼ばれる電場数値解析手法を用いることで、偏光OCTのプローブ光が格子状のサンプルに入射した際のOCT信号の特性を解析しています。この解析により、格子状のサンプルをOCTで撮影した場合、本来存在しない一に擬似的な信号ピークが発生することが確認されました。

今後、この解析手法を拡張子、偏光OCTの信号がどのような組織構造に対応していくのかを解析していくことになります。

この研究の詳細は OSA Continuum 誌に掲載されています。

H. Ichikawa, Y. Yasuno, and H. Fujibuchi, "Optical coherence tomography interpreted by diffractive optics: A-scan image formation with wavelength-scale diffraction gratings as samples," OSA Continuum 3, 2395- (2020).

Tuesday, December 10, 2019

Publication: Multi-contrast imaging of Vogt-Koyanagi Harada disease

 Our collaborator Masahiro Miura from Tokyo Medical University and we jointly reported that our multi-contrast  OCT can clearly visualize the pathologies of retinal pigment epithelium (RPE) in Vogt-Koyanagi-Harada disease (VKH).

VKH is a systemic disease associated with abnormality of melanin. It also strikes the posterior eye and can cause blindness. Miura used both near infrared fundus autofluorescence imaging and a custom-built multi-contrast polarization-sensitive OCT build by us for the evaluation of RPE's melanin. It was demonstrated that the multi-contrast OCT can be used to evaluate the melanin accumulation at RPE.

The details of the research is published in Scientific Reports.


東京医科大学 三浦雅博教授と私達の研究グループの共同研究の成果である「マルチコントラストOCTによる原田病における色素上皮異常の評価」が Investigative Ophthalmology & Visual Science (IOVS) 誌において発表されました。

原田病は色素異常を伴う全身疾患です。この病気は眼底にも影響を及ぼし、失明に至ることもあります。三浦教授は、近赤外眼底自発蛍光イメージングと、私達によって開発されたマルチコントラストOCTを用いて原田病の眼底を観察し、マルチコントラストOCTにより原田病の網膜色素上皮におけるメラニンの凝集を可視化することができることを示しました。

この研究の詳細は IOVS 誌に掲載されています。

M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Sugiyama, T. Mino, T. Yamaguchi, T. Agawa, T. Iwasaki, Y. Usui, N.A. Rao, H. Goto, "Evaluation of Retinal Pigment Epithelium Layer Change in
Vogt-Koyanagi-Harada Disease With Multicontrast Optical
Coherence Tomography," Investigative Ophthalmology & Visual Science 60, 3352 (2019).

Friday, November 1, 2019

Publication: Clinical Full Jones Optical Coherence Tomograph


Our colleague Shinnosuke Azuma recently reported a new clinical grade Jones matrix optical coherence tomography (JM-OCT) for retinal investigation.

This new system is the state-of-the-art clinical system, which is very compact in size and  highly stable. As a fully-functional JM-OCT, it measures a set of three-dimensional tomographies of human subjects' retina by a single click. The set of tomographies consists of structural tomography, polarization uniformity tomography (indicating melanin distribution), OCT angiography (flow imaging), and birefringence tomography (collagen specific tomography).

The clinical value of the new JM-OCT system was validated by measuring pathologic eyes of age-related macular degeneration, polypoidal choroidal vasculopathy and drusen.

The details of the research is published in Biomedical Optics Express.


私達の研究グループの東神之介さんが小型・安定型の臨床グレード眼底検査用マルチコントラストOCTを開発し、研究論文として発表しました。

このシステムは最新のコンパクト光学設計を用いることで従来装置の半分のサイズという小型化と高い長期安定性を同時に実現しました。また、この装置はマルチコントラスト機能を持ち、一度のスキャンで生きたヒトの眼底の「形態」「メラニン分布」「コラーゲン特性分布」「血流分布」を可視化することができます。

論文ではさらに、加齢黄斑変性、ポリープ状脈絡膜新生血管症、ドルーゼンなどの眼底疾患を対象に検査を行い、本装置の臨床有用性を示しました。

この研究の詳細は米光学会ジャーナル「Biomedical Optics Express」に報告されています。
>> Full length article (open access).

S. Azuma, S. Makita, D. Kasaragod, S. Sugiyama, M. Miura, and Y. Yasuno, "Clinical multi-functional OCT for retinal imaging," Biomedical Optics Express 10, 5724-5743 (2019).