Wednesday, February 1, 2017

Publication: Quantitative birefringence estimator for Jones matrix OCT

Our colleague Deepa Kasaragod has reported her new mathematical theory and numerical algorithm that give highly quantitative measurement capability to Jones matrix optical coherence tomography (JM-OCT). And hence, it enabled three-dimensional quantitative measurement of in vivo tissue birefringence.

This method is based on a maximum a-posteriori estimation theory. It first compute the probability distributions of a true signal-to-noise ratio and a true birefringence when particular measurements of a birefringence and signal-strength were occurred. The estimator finally gives the most probable true birefringence value under the measured birefringence and signal-strength by using the probability distributions.

The method was validated numerically and also experimentally by investigating in vivo human eye.
The details are reported in Biomedical Optics Express (see the bottom for a link).

当研究室の Deepa Kasaragod 研究員が新しい複屈折推定理論・アルゴリズムに関する論文を発表しました。この理論・アルゴリズムは、Jones matrix OCT で得られた「計測された複屈折値」と「計測された散乱信号強度」から「もっとも確からしい真の複屈折値」を推定するものです。これによって生体複屈折の3次元定量計測が可能になりました。


この手法の理論、実装の詳細と数値的検証結果、生きたヒト眼底計測に適用した結果はアメリカ光学会の論文誌 Biomedical Optics Express に掲載されています。

>> Full-length article (open access)
D. Kasaragod, S. Makita, Y.-J. Hong, and Y. Yasuno, "Noise stochastic corrected maximum a posteriori estimator for birefringence imaging using polarization-sensitive optical coherence tomography," Biomed. Opt. Express 8, 653-669 (2017).